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INTRODUCTION
Analogical reasoning enables hu-
mans to understand novel prob-
lems by connecting to past expe-
rience [1]. While we make analo-
gies without direct training, con-
ventional AI systems require thou-
sands of training examples to per-
form well on benchmark tasks [2].

Cognitive science has identified
connections between language and
analogy-making in humans:
• Numbers in language enable nu-

merical analogies [3]
• Spatial relations in language en-

able spatial analogies [4]
• Assigning nonsense names to ab-

stract relations enhances analogy-
making with them [5]

Inspired by this, we explore the ap-
plication of pre-trained language
models (PLMs) to analogy-making.

PROBLEM DEFINITION & APPLIED ABSTRACTIONS
We apply PLMs to Raven’s Progressive Matrices (RPM) [6] by converting the RAVEN dataset into text prompts [7].
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IMPACT OF ABSTRACTIONS
On RAVEN dataset [7], PLMs achieve striking zero-shot performance increasing with model complexity, approaching humans and supervised models.
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Human Rel-AIR [8] CoPINet + ACL [9] Random Attr. Naming Comp. Decomp. Comp. & Attr. Decomp.

ANALYSIS ON ATTRIBUTES & RELATIONS
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ANALYSIS ON DISTRACTING ATTRIBUTES
PLMs show robustness to distracting features injected into prompts.

Distractor Values Naming Abstractions Naming & Decomposition

RAVEN 76.0% (-1.2%) 80.0% (-0.0%)
Random 72.6% (-4.6%) 77.8% (-2.2%)

The capability to distinguish important features from background features is
essential to analogy-making. Future work should explore this further.

ANALYSIS ON IN-CONTEXT LEARNING
Most of PLM performance comes from in-context learning, but, surprisingly, some comes from prior knowledge.
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Human Rel-AIR [8] CoPINet + ACL [9] Random 1 Row 2 Rows 3 Rows

Sub-Task 1 Row 2 Rows 3 Rows Human

Center 36.8% 69.2% 77.2% 95.6%
2x2Grid 54.0% 71.0% 78.0% 81.8%
3x3Grid 73.0% 85.2% 86.4% 79.6%
L-R 14.0% 38.2% 54.2% 86.4%
U-D 12.4% 42.0% 53.6% 81.8%
O-IC 19.6% 53.6% 64.8% 86.4%
O-IG 32.0% 62.2% 74.8% 81.8%
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