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INTRODUCTION PROBLEM DEFINITION & APPLIED ABSTRACTIONS
Analogical reasoning enables hu- We apply PLMs to Raven’s Progressive Matrices (RPM) [6] by converting the RAVEN dataset into text prompts [7].
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IMPACT OF ABSTRACTIONS

On RAVEN dataset [7], PLMs achieve striking zero-shot performance increasing with model complexity, approaching humans and supervised models.
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ANALYSIS ON DISTRACTING ATTRIB

PLMs show robustness to distracting features injected into prompts. mmm Attr Naming Only  EEE Component Decomp. Component + Attr. Decomp.

Distractor Values Naming Abstractions Naming & Decomposition

RAVEN 76.0% (-1.2%) 80.0% (-0.0%)
Random 72.6% (-4.6%) 77.8% (-2.2%)

The capability to distinguish important features from background features is
essential to analogy-making. Future work should explore this further.

ANALYSIS ON IN-CONTEXT LEARNING

Most of PLM performance comes from in-context learning, but, surprisingly, some comes from prior knowledge.
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