Cognitive Motivations in Analogical and Physical Reasoning with Large Language Models

Shane Storks (he/him)

PhD Candidate in Computer Science and Engineering

Cognitive Science Seminar

October 10, 2023

Introduction

- Large language models (LLMs) like ChatGPT and GPT-4 have recently attracted attention
- Impressive, seemingly human-like conversation and reasoning capabilities solve many problems for automated language processing
- Enable research on interesting questions:
- 1. How can LLMs shed light on the nature of human language and reasoning?
- 2. How can human reasoning strategies empower LLMs to better capture how the world works?

Outline

• Language Model Basics

- Application 1: Analogical Reasoning
- Application 2: Physical Commonsense Reasoning

Language Models

$$p(w_n|w_1, w_2, \dots, w_{n-1})$$

Jack needed some *money*, so he went and shook his *piggy____*

Large Language Models

- What makes a language model a *large* language model?
- Recent trends:
 - More data
 - Web data
 - Human feedback annotation
 - More learned parameters
- Gives rise to new abilities...

(figure from Vinay lyengar)

Prompting and In-Context Learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

1	Translate English to French:	<	task description
2	cheese =>	<i>←</i>	prompt

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

Chain-of-Thought Prompting

Standard Prompting

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Chain of Thought Prompting

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27. 🗙

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Outline

- Language Model Basics
- Application 1: Analogical Reasoning
- Application 2: Physical Commonsense Reasoning

In-Context Analogical Reasoning with Pre-Trained Language Models

Xiaoyang Hu^{1,2}*, Shane Storks¹*, Richard L. Lewis²⁺, Joyce Chai¹⁺

¹ Computer Science & Engineering Division, University of Michigan ² Department of Psychology, University of Michigan * Equal contribution [†] Equal advising

ACL 2023 Long Paper

some slides made by Xiaoyang Hu

- Making analogies is a fundamental capability of humans
- Enables us to tackle new situations based on past experience

• Work in cognitive science has found that language and analogy are connected in humans:

- Work in cognitive science has found that language and analogy are connected in humans:
 - Numerical language facilitates numerical analogies

- Work in cognitive science has found that language and analogy are connected in humans:
 - Numerical language facilitates numerical analogies
 - Spatial language facilitates spatial analogies

- Work in cognitive science has found that language and analogy are connected in humans:
 - Numerical language facilitates numerical analogies
 - Spatial language facilitates spatial analogies
 - Names support analogy-making (even nonsense names)

relational match

non-relational match

- Analogy-making may be key to robust reasoning in AI systems
- Contemporary AI approaches for analogy-making require thousands of training examples to make any progress
- Meanwhile, LLMs can pick up new tasks through in-context learning with just a few relevant examples (more like humans)
 - Are they capable of analogy-making?

Questions

- 1. Does training LLMs on *natural language* give rise to the ability to form *abstract* analogies?
- 2. How do various factors contribute to analogy-making in LLMs?
 - Complexity of situations to make analogies from
 - Language-based abstractions (like names)
 - Complexity (size/# learned parameters) of LLM
 - In-context demonstration of task

Raven's Progressive Matrices (RPM)

- A canonical test of analogical reasoning often used with human subjects
- Test-taker infers abstract rules from first 2 rows, then apply them to complete the third row
- RAVEN dataset
 - Relations:
 - Constant
 - Progression
 - Arithmetic
 - Distribute-Three

17

Prompting for Analogical Reasoning

- Created language abstractions for RPMs in RAVEN dataset
- Prompt LLMs to test abstract analogical reasoning capability
 - OPT & InstructGPT at varying model complexity

Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and Song-Chun Zhu. 2019a. RAVEN: A dataset for relational and analogical visual reasoning. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*. Long Ouyang, Jeff Wu, Xu Jiang, et al. 2022. Training language models to follow instructions with human feedback. arXiv: 2203.02155. 18 Susan Zhang, Stephen Roller, Naman Goyal, et al. 2022. OPT: Open Pre-trained Transformer Language Models. arXiv: 2205.01068.

Components of RAVEN Matrix Items

Entity-Level Abstractions

Naming

Layout-Level Abstractions

Component-Level Abstraction

22

Baselines

- How helpful are the naming abstractions we chose?
- 2 baselines for comparison:
 - **1. Quasi-image**: lower-level "pixel-like" abstraction
 - 2. Random naming: choose random words to represent attributes, removing numerical dependencies between attribute names

Single Entity Results

Single Entity Results

- <u>Analogies do arise from</u> <u>natural language training!</u>
- Bigger LLMs are better analogy-makers
- Numerical naming enables better analogy-making
- Decomposition abstractions especially help smaller LLMs
 - Model complexity ≈ working memory?

Model Size (Billion Parameters)

Multiple Entity Results

2x2Grid 3x3Grid \checkmark \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \Diamond Δ \diamond \Diamond

Multiple Entity Results

- Humans struggle more with task complexity than LLMs
 - Model complexity ≈ working memory?
- Can outperform humans and supervised approaches

Multiple Component Results

Multiple Component Results

Model Size (Billion Parameters)

29

Impact of In-Context Learning

Model Size (Billion Parameters)

Takeaways

- 1. LLMs gain a fair capacity for abstract analogical reasoning from large-scale natural language training!
- 2. A number of factors strengthen their capability to make analogies:
 - Stronger language abstractions
 - LLM size
 - In-context demonstration
- 3. Complexity of context does not seem to impact LLMs as much as humans!

Outline

- Language Model Basics
- Application 1: Analogical Reasoning
- Application 2: Physical Commonsense Reasoning

From Heuristic to Analytic: Cognitively Motivated Reasoning Strategies for Coherent Physical Commonsense in Pre-Trained Language Models

Zheyuan Zhang1Shane Storks1Fengyuan Hu1Sungryull Sohn2Moontae Lee2Honglak Lee1,2Joyce Chai1

¹University of Michigan, Computer Science and Engineering Division ²LG AI Research

EMNLP 2023 Long Paper

Tiered Reasoning for Intuitive Physics (TRIP)

Story A

- 1. Ann sat in the chair.
- 2. Ann turned off the telephone.
- 3. Ann picked up a pencil.
- 4. Ann opened the book.
- 5. <u>Ann wrote in the book.</u>

Story **B**

- 1. Ann sat in the chair.
- → **2.** Ann turned off the telephone.
 - 3. Ann picked up a pencil.
 - 4. Ann opened the book.
 - 5. Ann heard the telephone ring.

Which story is more plausible? A	
Why not B?	
Conflicting sentences : $2 \rightarrow 5$	
Physical states:	
Powered(telephone) → ¬Powered(telephone)	
×	
Powered(telephone) — Powered(telephone)	9

Evaluation Metrics

Physical

States

Tiered Baseline

 $\mathcal{L} = \lambda_p \mathcal{L}_p + \lambda_f \mathcal{L}_f + \lambda_c \mathcal{L}_c + \lambda_s \mathcal{L}_s$

RoBERTa Baseline Results on TRIP

Error Distribution

Baseline Results

Tiered Task Learning

Utility of Attributes

Sample System Outputs

(a) A verifiable prediction.

(b) A consistent but not verifiable prediction.

Conclusion

- 1. Natural language training creates a capacity for abstract analogical reasoning in LLMs!
- 2. Dual reasoning processes enable LLMs to focus on the correct language context and reason more coherently about the world through language!

Dual Processes of Human Cognition

A line of work theorizes two processes in human reasoning:

- Heuristic: fast, intuitive
 - Provides quick intuition for decisions; extracts most relevant info from context
- Analytic: slow, deliberative
 - Further operates on relevant info to rationalize and perform inference.
- Can these dual processes similarly strengthen reasoning in PLMs?

2 Tasks for Coherent Physical Commonsense

TRIP

Story A:

- 1. Mary went to the fridge.
- 2. Mary took out a bowl from the fridge.
- 3. The bowl had a cucumber and a donut in it.
- 4. Mary put the cucumber on the counter.
- 5. Mary ate the donut.

Story B:

- 1. Mary went to the fridge.
- 2. Mary took out a bowl from the fridge.
- 3. The bowl had a cucumber and a donut in it.
- 4. Mary tossed the donut in the trash.
- 5. Mary ate the donut.

Plausible story: A Conflicting sentences: (4, 5) States: inedible(donut) → edible(donut)

Tiered-ProPara

Story A:

- 1. Air is brought in through the mouth.
- 2. Passes through the lungs.
- 3. And into the bronchial tissue.
- 4. The *carbon dioxide* is removed.
- 5. The lungs bring the oxygen to the rest of the body.

Story B:

- 1. Carbon dioxide enters the leaves through the stomates by diffusion.
- 2. Water is transported to the leaves in the xylem.
- 3. Energy harvested through light reaction is stored by forming ATP.
- 4. Carbon dioxide and energy from ATP are used to create sugar.
- 5. Oxygen exits the leaves through the stomata by diffusion. ...

Carbon dioxide conversion story: B Carbon dioxide conversion sentence: 4 Carbon dioxide conversion entity: sugar

Heuristic-Analytic Reasoning (HAR)

Outline

• HAR in PLM Fine-Tuning

• HAR in PLM In-Context Learning

Incorporating HAR into Fine-Tuning

- Coalescing Global & Local Information (CGLI):
 - Augments RoBERTa with temporal embedding to capture local information as states change
- Focused CGLI (FCGLI):
 - Small improvements to CGLI
- Focused CGLI with Heuristic-Analytic Reasoning (FCGLI-HAR):
 - After each prediction is made, delete segments of the context that become irrelevant

Fine-Tuning Results

TRIP				Tiered-ProPara			
Approach	Accuracy	Consistency	Verifiability	Approach	Accuracy	Consistency	Verifiability
RoBERTa	72.9	19.1	9.1	FCGLI	94.5	56.7	36.2
CGLI	94.1	77.3	28.0		05.1	92.6	57 /
Breakpoint	80.6	53.8	32.4	ГСОLІ-ПАК	95.1	03.0	57.4
FCGLI	93.7	66.2	33.8				
FCGLI-HAR	94.3	75.4	41.1				

<u>Yinhan Liu, Myle Ott, Naman Goyal, et al. 2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv: 1907.11692.</u> <u>Kaixin Ma, Filip Ilievski, Jonathan Francis, et al. 2022. Coalescing Global and Local Information for Procedural Text Understanding. In *COLING 2022.* <u>Kyle Richardson, Ronen Tamari, Oren Sultan, et al. 2022. Breakpoint Transformers for Modeling and Tracking Intermediate Beliefs. In *EMNLP 2022.*</u></u>

Outline

- HAR in PLM Fine-Tuning
- HAR in PLM In-Context Learning

Unstructured In-Context Learning (ICL-U)

Story A:

1. Mary went to the fridge.

- 2. Mary took out a bowl from the fridge.
- 3. The bowl had a cucumber and a donut in it.
- 4. Mary tossed the donut in the trash.
- 5. Mary ate the donut.

Story B:

1. Mary went to the fridge.

- 2. Mary took out a bowl from the fridge.
- 3. The bowl had a cucumber and a donut in it.
- 4. Mary put the cucumber on the counter.
- 5. Mary ate the donut.

Story B is more plausible.

In Story A, **sentences 4 and 5** conflict with each other.

For sentence 4: After *Mary tossed the donut in the trash* ... the **donut** is now **inedible**. For sentence 5: Before *Mary ate the donut* ... the **donut** was **edible**.

In-Context Learning with Traditional CoT (ICL-CoT)

Story A:

1. Mary went to the fridge.

2. Mary took out a bowl from the fridge.

3. The bowl had a cucumber and a donut in it.

4. Mary tossed the donut in the trash.

5. Mary ate the donut.

Story B:

1. Mary went to the fridge.

2. Mary took out a bowl from the fridge.

3. The bowl had a cucumber and a donut in it.

4. Mary put the cucumber on the counter.

5. Mary ate the donut.

In-Context Learning with HAR (ICL-HAR)

Story A:

1. Mary went to the fridge.

- 2. Mary took out a bowl from the fridge.
- 3. The bowl had a cucumber and a donut in it.
- 4. Mary tossed the donut in the trash.
- 5. Mary ate the donut.

Story B:

1. Mary went to the fridge.

- 2. Mary took out a bowl from the fridge.
- 3. The bowl had a cucumber and a donut in it.
- 4. Mary put the cucumber on the counter.
- 5. Mary ate the donut.

Story B is more plausible.

In Story A, **sentences 4 and 5** conflict with each other.

For sentence 4: After *Mary tossed the donut in the trash* ... the **donut** is now **inedible**. For sentence 5: Before *Mary ate the donut* ... the **donut** was **edible**.

In-Context Learning Results

		Instri	<u>ictGPT</u>				
TRIP Tiered-ProPara							
Approach	Acc.	Cons.	Ver.	Acc.	Cons.	Ver.	
ICL-U	70.9	40.7	7.1	54.9	17.4	5.2	
ICL-CoT	75.0	40.7	10.8	50.7	19.2	7.5	
ICL-HAR	72.6	47.9	23.9	54.9	31.5	20.7	
		LL	aMA				
TRIP Tiered-ProPara							
		TRIP		Tie	red-Prol	Para	
Approach	Acc.	TRIP Cons.	Ver.	Tie Acc.	red-Prol Cons.	P <mark>ara</mark> Ver.	
Approach ICL-U	Acc. 70.4	TRIP <i>Cons.</i> 42.3	<i>Ver.</i> 14.8	$\frac{\text{Tien}}{\text{Acc.}}$	red-Prol Cons. 3.8	Para <i>Ver.</i> 1.4	
Approach ICL-U ICL-CoT	Acc. 70.4 74.6	TRIP <i>Cons.</i> 42.3 42.3	<i>Ver.</i> 14.8 19.7	Tien Acc. 51.2 57.3	red-Prol Cons. 3.8 9.4	Para Ver. 1.4 4.2	

Long Ouyang, Jeff Wu, Xu Jiang, et al. 2022. Training language models to follow instructions with human feedback. arXiv: 2203.02155. Hugo Touvran et al. 2023. LLaMA: Open and Efficient Foundation Language Models. arXiv: 2302.13971.

Attention Analysis

attentional ratio = $\frac{66.5}{33.5} \approx 1.99$

Matthew E. Peters, Mark Neumann, et al. 2018. Dissecting contextual word embeddings: Architecture and representation. In *EMNLP 2018.* Ian Tenney, Patrick Xia, Berlin Chen, et al. 2019. What do you learn from context? Probing for sentence structure in contextualized word representations. In *ICLR.* Hugo Touvron, Thibaut Lavril, Gautier Izacard, et al. 2023. LLaMA: Open and Efficient Foundation Language Models. *arXiv: 2302.13971.*

Attention Analysis

Story B is more plausible.

In Story A, sentences 4 and 5 conflict with each other.

For sentence 4: After *Mary tossed the donut in the trash* ... the donut is now inedible. For sentence 5: Before *Mary ate the donut* ... the donut was edible.

attentional ratio $\approx \frac{25.95}{6.01} \approx 4.32$

Matthew E. Peters, Mark Neumann, et al. 2018. Dissecting contextual word embeddings: Architecture and representation. In *EMNLP 2018.* Ian Tenney, Patrick Xia, Berlin Chen, et al. 2019. What do you learn from context? Probing for sentence structure in contextualized word representations. In *ICLR.* Hugo Touvron, Thibaut Lavril, Gautier Izacard, et al. 2023. LLaMA: Open and Efficient Foundation Language Models. *arXiv: 2302.13971*.

Attentional Precision and Recall

- To measure how attended context and correct predictions correlate, we use **attentional precision** and **attentional recall**
 - *True/false positive*: Correct attention, and correct/incorrect prediction
 - *True/false negative*: Incorrect attention, and correct/incorrect prediction

Attention Analysis Results

- PLMs focus better on the correct language context during each step of reasoning
- Faithful attention and coherent reasoning go hand in hand!

Sentence Selection Step

		TRIP		Tiered-ProPara		
Approach	Ratio	Prec.	Rec.	Ratio	Prec.	Rec.
ICL-U ICL-HAR	0.96 1.07	42.6 75.2	39.6 48.7	0.90 1.80	14.8 51.1	30.6 58.2

Physical State Prediction Step

	TRIP			Tiered-ProPara		
Approach	Ratio	Prec.	Rec.	Ratio	Prec.	Rec.
ICL-U ICL-HAR	1.23 1.95	43.0 79.8	35.4 98.2	1.21 2.20	14.6 72.1	25.9 83.3

Conclusion

- Human-inspired heuristic-analytic reasoning helps PLMs reason more coherently when applied to downstream tasks
- Successful because it helps PLMs focus on the correct language context at each step of reasoning
- Check out our paper for more details and results!

From Heuristic to Analytic: Cognitively Motivated Strategies for Coherent Physical Commonsense Reasoning

Zheyuan Zhang1*Shane Storks1*Fengyuan Hu1Sungryull Sohn2Moontae Lee2,3Honglak Lee1,2Joyce Chai111

Thank you!

www.shanestorks.com