Beyond the Tip of the Iceberg: Assessing Coherence of Text Classifiers

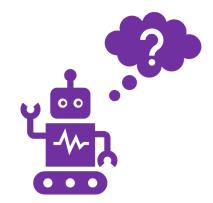
Shane Storks & Joyce Chai

└──→ (he/him) <u>Situated Language and Embodied Dialogue</u> (SLED) University of Michigan, Computer Science and Engineering Division sstorks@umich.edu

Findings of EMNLP 2021 Short Paper

Introduction

• Today, language understanding is often boiled down to **high-level** classification tasks



Textual Entailment

Dialog:

...

A₁: Yeah, yeah. Is that why you like aerobics classes, because you're not, sort of, someone else is doing the counting for you, so,
B₁: Yeah.

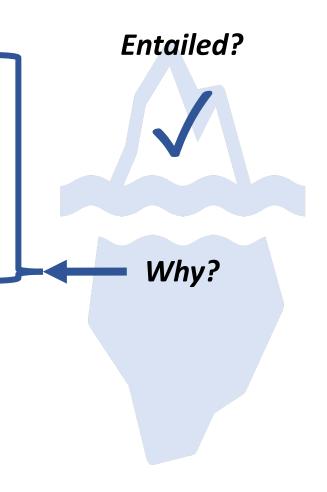
B₂: And, someone else is telling me, okay, you know, let's move this way, let's move that way,

A₂: Uh-huh, uh-huh.

B₃: instead of me having to think about it so much.

Hypothesis:

Speaker **B** likes the aspect of Aerobics that someone else is leading.



Coherence

Dialog:

A₁: Well, ironically enough I'm sitting here with a cast on my leg because <u>I resumed an</u> <u>aerobics class</u> the night before last.

B₁: Oh, no.

A2: I ripped the ligaments in my right ankle.

Hypothesis:

Speaker A ripped the ligaments in her ankle at aerobics class.

Strict Coherence: all spans correct

Lenient Coherence: average accuracy on spans

Empirical Results

• Despite high accuracy from SOTA text classifiers, we see <u>significant</u> drops from accuracy to coherence across the board!

Model	Accuracy (%)	Strict Coherence (Δ ; %)	Lenient Coherence $(\Delta; \%)$
majority	57.8	-	_
BERT	55.8	28.5 (-27.3)	35.7 (-20.1)
ROBERTA	70.9	39.0 (-31.9)	47.5 (-23.4)
$\hookrightarrow + MNLI$	78.5	50.6 (-27.9)	58.2 (-20.3)
DEBERTA	67.4	37.2 (-30.2)	45.2 (-22.2)

CE, test:

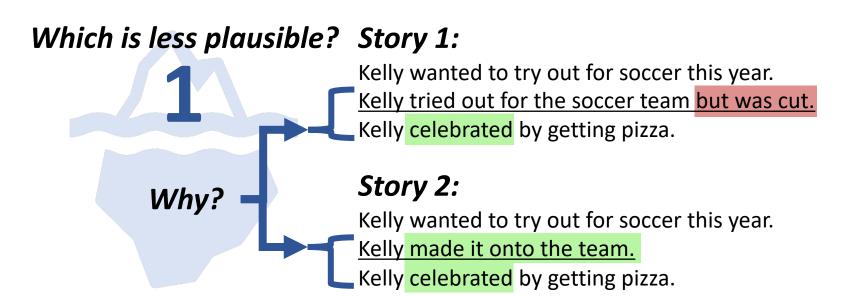
Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. NAACL HLT 2019.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv: 1907.11692

Williams, A., Nangia, N., & Bowman, S.R. (2018). A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference. NAACL HLT 2017.

He, P., Liu, X., Gao, J., & Chen, W. (2021). DeBERTa: Decoding-enhanced BERT with Disentangled Attention. arXiv: 2006.03654.

Abductive Reasoning in narrative Texts (ART)



Empirical Results

• Despite high accuracy from SOTA text classifiers, we see <u>significant</u> drops from accuracy to coherence across the board!

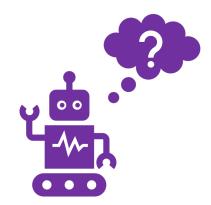
Model	Accuracy (%)	Strict Coherence $(\Delta; \%)$	Lenient Coherence (Δ ; %)
majority	55.0 (50.1)	_	–
BERT Roberta Deberta	66.7 (66.7) 87.8 (84.2) 88.4 (85.7)	42.3 (-24.4) 55.0 (-32.8) 59.8 (-28.6)	43.7 (-23.0) 59.3 (-28.5) 61.8 (-26.6)

ART, validation:

Bhagavatula, C., Le Bras, R., Malaviya, C., Sakaguchi, K., Holtzman, A., Rashkin, H., Downey, D., Yih, S.W., & Choi, Y. (2020). Abductive commonsense reasoning. In ICLR 2020. Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. NAACL HLT 2019. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv: 1907.11692 He, P., Liu, X., Gao, J., & Chen, W. (2021). DeBERTa: Decoding-enhanced BERT with Disentangled Attention. arXiv: 2006.03654.

Conclusion

- We proposed a quick, effective, and versatile paradigm for measuring the coherence of a text classifier's predictions
 - Unlock strong insights from small amount of annotation!



Thank you!



www.shanestorks.com