Toward Coherent Commonsense Language Understanding in Machines

Shane Storks

(he/him) <u>S</u>ituated Language and Embodied Dialogue sstorks@umich.edu

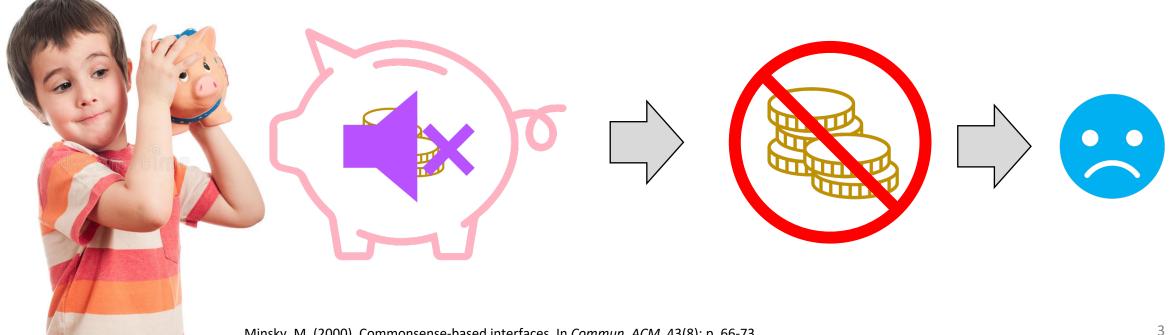
EECS 692 (Advanced Artificial Intelligence) Guest Lecture

Outline

- 1. Introduction
- 2. Current Limitations
- 3. Assessing Coherence of Commonsense Reasoning
- 4. Learning Verifiable Commonsense Reasoning
- 5. Conclusion

Commonsense Reasoning

"Jack needed some money, so he went and shook his piggy bank. He was disappointed when it made no sound."



Minsky, M. (2000). Commonsense-based interfaces. In *Commun. ACM*, 43(8): p. 66-73. Davis, E. & Marcus, G. (2015). Commonsense reasoning and commonsense knowledge in artificial intelligence. In *Commun. ACM*, 58(9): p. 92-103.

Then what is all this about?

New AI Model Exceeds Human Performance at Question

(BecomingHuman.ai)

AI, ML & DATA ENGINEERING

AI models from Microsoft and Google already surpass human performance on the SuperGLUE language benchmark

@Kyle_L_Wiggers January 6, 2021 11:04 AM Kvle Wiaaers

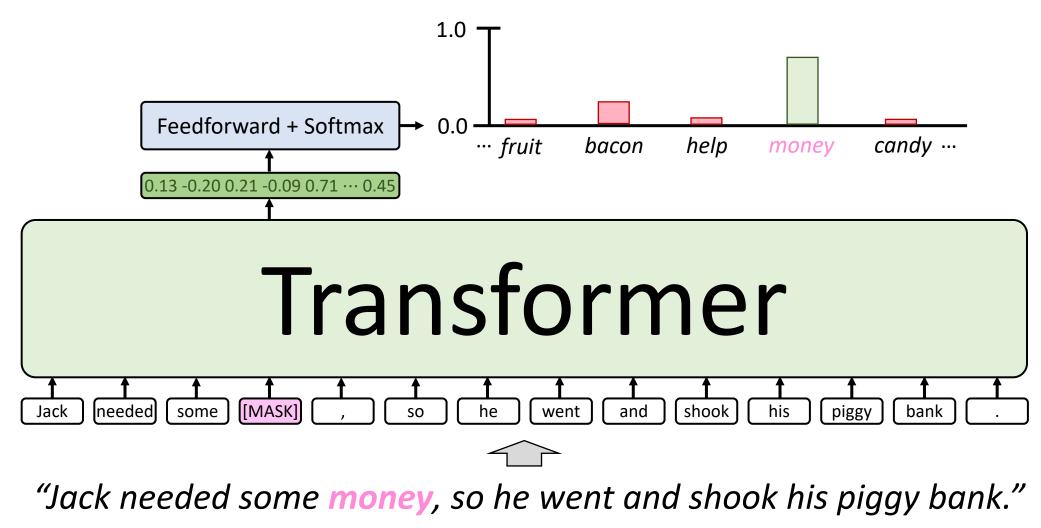
(The Machine)

InfoO Live (June 22nd) - Overcome Cloud and Serverless Security Challe

AI Models from Google and Microsoft Exceed Human Performance on Language Understanding Benchmark

ப் LIKE		Ð		<u>(InfoQ)</u>	
JAN 12, 2021 •	3 MIN READ	Resea	rch teams from <u>Google</u> and <u>Microsoft</u> have recently developed natural languag	e	

Large, Pre-Trained Language Models (LMs)



Large, Pre-Trained Language Models (LMs)

Q: What is your favorite animal? A: My favorite animal is a dog.

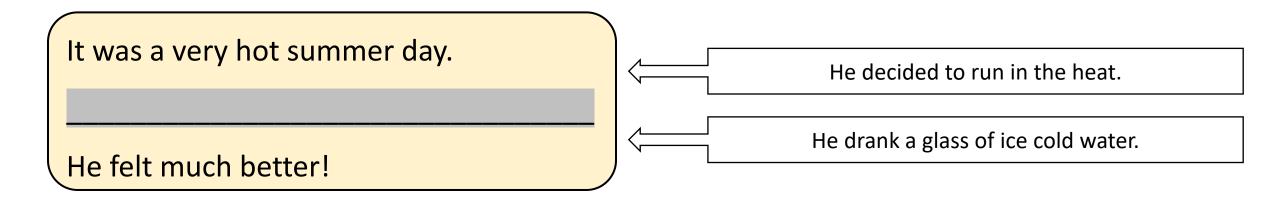
Q: Why?

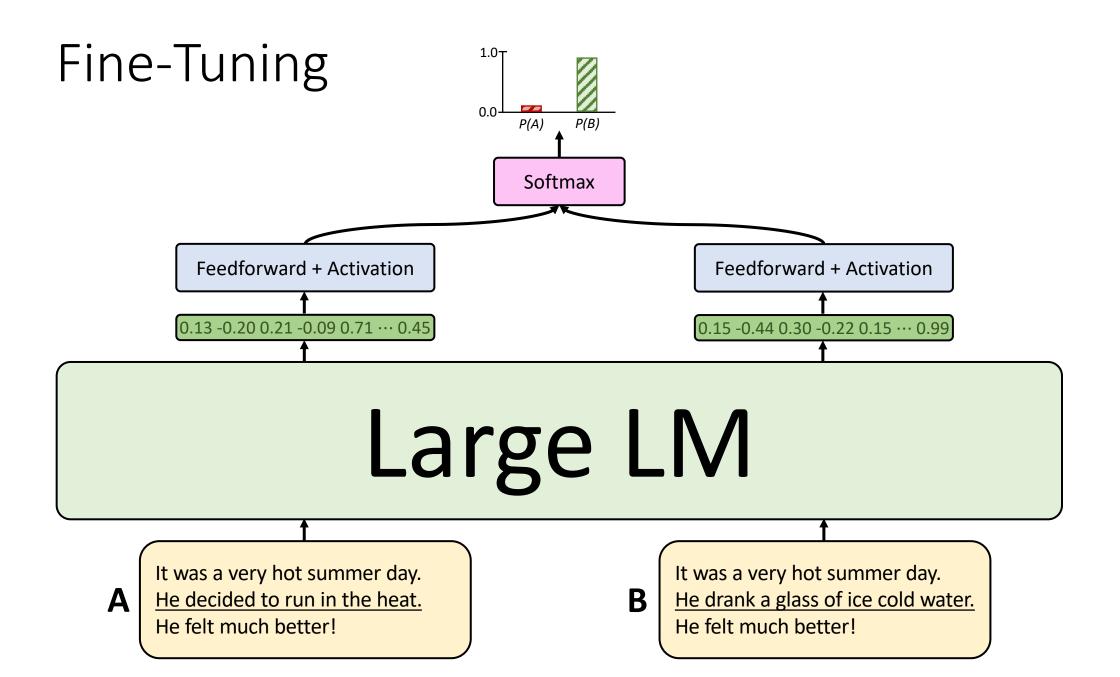
- A: Because dogs are loyal and friendly.
- Q: What are two reasons that a dog might be in a bad mood?
 A: Two reasons that a dog might be in a bad mood are if it is hungry or if it is hot.

Q: How many eyes does a giraffe have? A: A giraffe has two eyes.

Downstream Classification Tasks

Which sentence is most likely to fill in the blank?

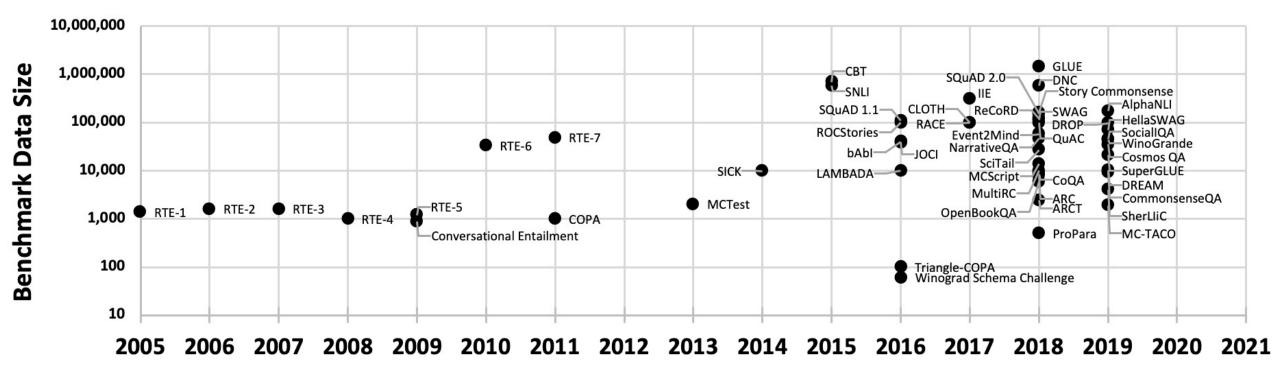




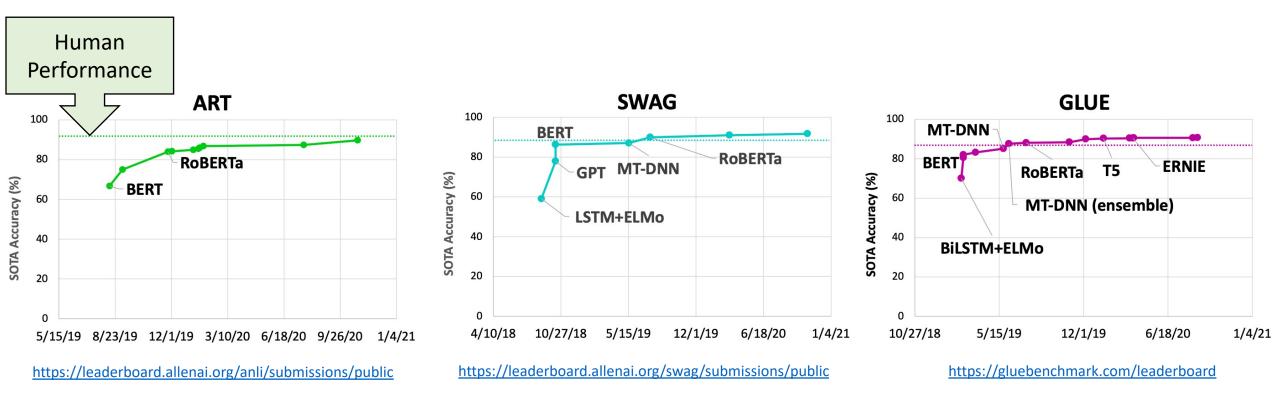
Leaderboard Ranking

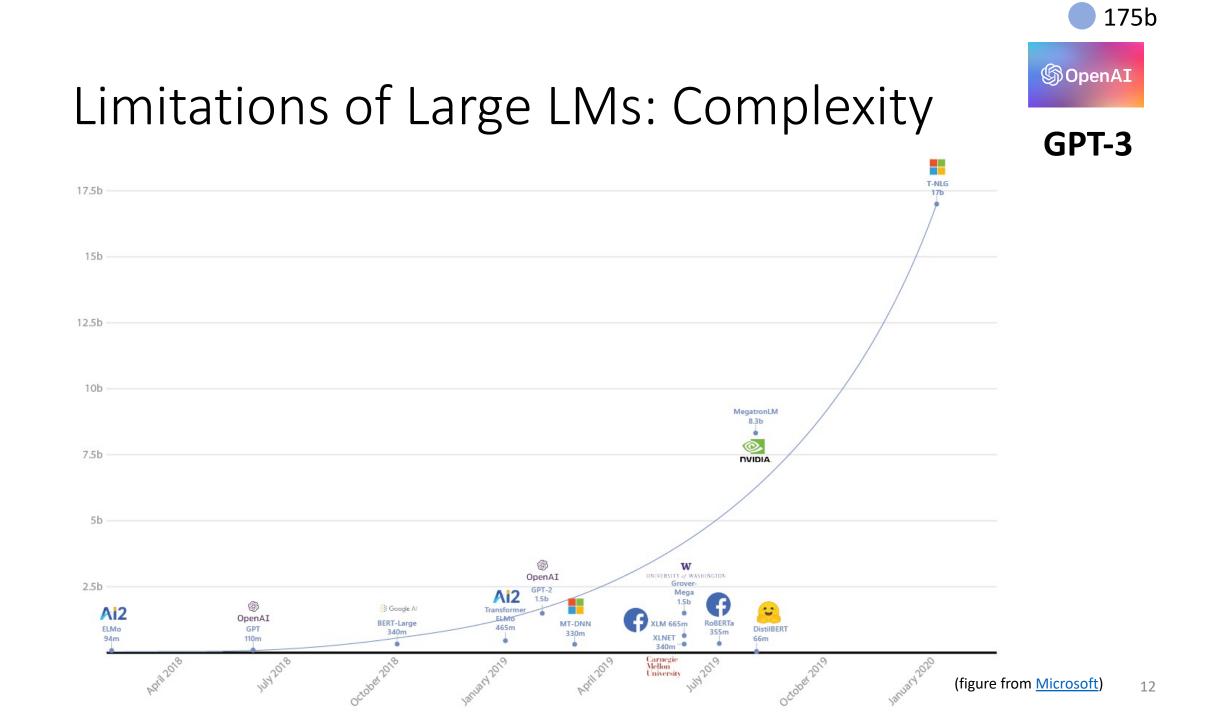
Rank 🔶	Submission	Created 🜲	Accuracy 💲
1	UNIMO UNIMO Team, Baidu NLP	05/15/2021	0.9118
2	DeBERTa Microsoft Dynamics 365 AI	10/27/2020	0.8970
3	anonymous	04/22/2021	0.8783
4	UNICORN Anonymous	07/23/2020	0.8734
5	anonymous ai2	05/04/2021	0.8730

Benchmark Datasets

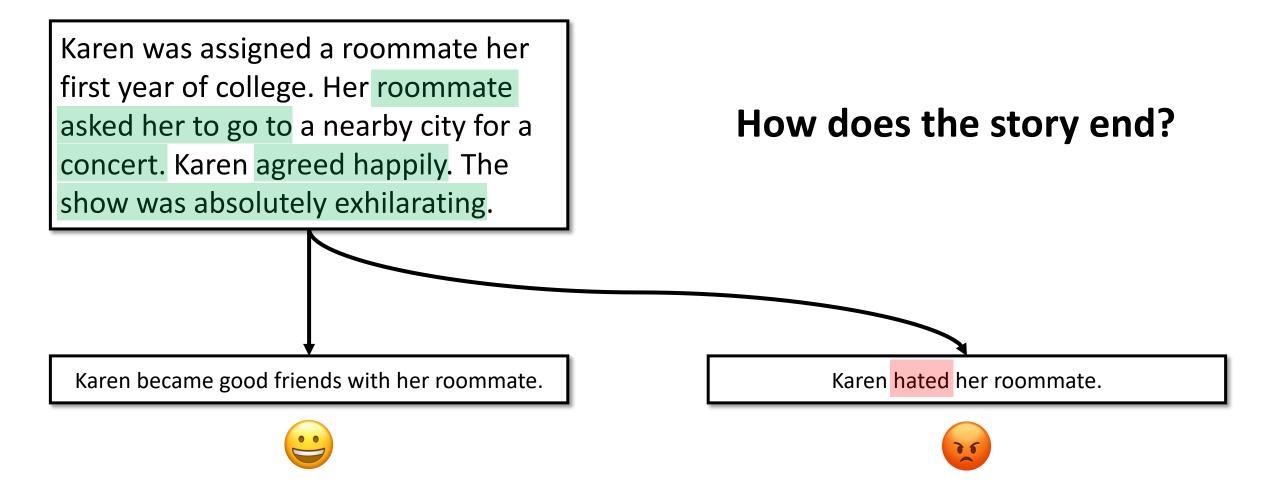


Human-Level Results





Limitations of Large LMs: Biased Data



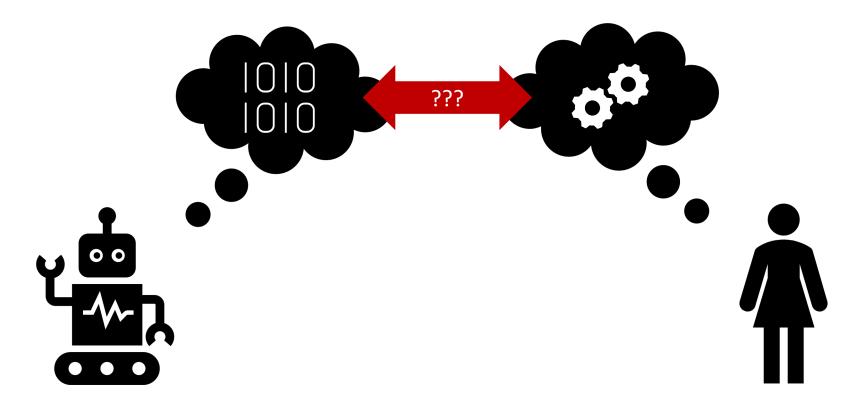
Schwartz, R., Sap, M., Konstas, I., Zilles, L., Choi, Y., & Smith, N.A. (2017). The Effect of Different Writing Tasks on Linguistic Style: A Case Study of the ROC Story Cloze Task. In CoNLL 2017. 13 Mostafazadeh, N., Chambers, N., He, X., Parikh, D., Batra, D., Vanderwende, L., Kohli, P. & Allen, J. (2016). A corpus and cloze evaluation for deeper understanding of commonsense stories. In NAACL 2016.

Next Steps

- In order to achieve true commonsense reasoning for natural language understanding (NLU), these key problems will be important to solve:
 - 1. Better understanding of modeling design choices
 - 2. External knowledge acquisition and incorporation into system reasoning
 - 3. Stronger definitions and understanding of system reasoning
 - 4. Broader, multidimensional metrics for evaluating system reasoning

Key Questions

- 1. Is the underlying "reasoning" of large LMs **coherent**?
 - Logical, consistent, and using same supporting evidence as humans to reach a conclusion
- 2. How can we support more coherent reasoning in large LMs?



Beyond the Tip of the Iceberg: Assessing Coherence of Text Classifiers

Shane Storks & Joyce Chai

(he/him)
Situated Language and Embodied Dialogue (SLED)
University of Michigan, Computer Science and Engineering Division
sstorks@umich.edu

Findings of EMNLP 2021 Short Paper

Textual Entailment

Dialog:

...

A₁: Yeah, yeah. Is that why you like aerobics classes, because you're not, sort of, someone else is doing the counting for you, so,
B₁: Yeah.

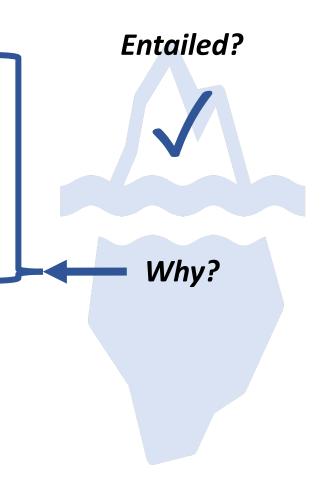
B₂: And, someone else is telling me, okay, you know, let's move this way, let's move that way,

A₂: Uh-huh, uh-huh.

B₃: instead of me having to think about it so much.

Hypothesis:

Speaker **B** likes the aspect of Aerobics that someone else is leading.



Coherence

Dialog:

A₁: Well, ironically enough I'm sitting here with a cast on my leg because <u>I resumed an</u> <u>aerobics class</u> the night before last.

B₁: Oh, no.

A2: I ripped the ligaments in my right ankle.

Hypothesis:

Speaker A ripped the ligaments in her ankle at aerobics class.

Strict Coherence: all spans correct

Lenient Coherence: average accuracy on spans

Empirical Results

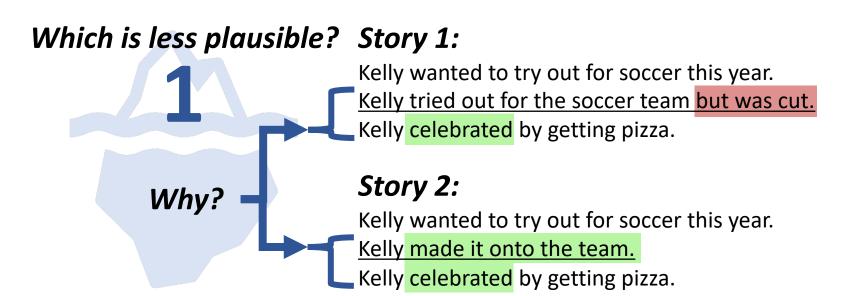
• Despite high accuracy from SOTA text classifiers, we see <u>significant</u> drops from accuracy to coherence across the board!

Model	Accuracy (%)	Strict Coherence (Δ ; %)	Lenient Coherence $(\Delta; \%)$					
majority	ajority 57.8 –		—					
BERT	55.8	28.5 (-27.3)	35.7 (-20.1)					
ROBERTA	70.9	39.0 (-31.9)	47.5 (-23.4)					
\hookrightarrow + MNLI	78.5	50.6 (-27.9)	58.2 (-20.3)					
DEBERTA	67.4	37.2 (-30.2)	45.2 (-22.2)					

CE, test:

Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. NAACL HLT 2019. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv: 1907.11692 Williams, A., Nangia, N., & Bowman, S.R. (2018). A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference. NAACL HLT 2017. He, P., Liu, X., Gao, J., & Chen, W. (2021). DeBERTa: Decoding-enhanced BERT with Disentangled Attention. arXiv: 2006.03654.

Abductive Reasoning in narrative Texts (ART)



Empirical Results

• Despite high accuracy from SOTA text classifiers, we see <u>significant</u> drops from accuracy to coherence across the board!

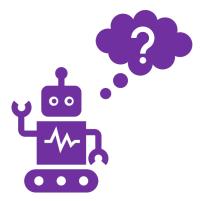
Model	Accuracy (%)	Strict Coherence $(\Delta; \%)$	Lenient Coherence (Δ ; %)
majority	55.0 (50.1)	_	–
BERT Roberta Deberta	66.7 (66.7) 87.8 (84.2) 88.4 (85.7)	42.3 (-24.4) 55.0 (-32.8) 59.8 (-28.6)	43.7 (-23.0) 59.3 (-28.5) 61.8 (-26.6)

ART, validation:

Bhagavatula, C., Le Bras, R., Malaviya, C., Sakaguchi, K., Holtzman, A., Rashkin, H., Downey, D., Yih, S.W., & Choi, Y. (2020). Abductive commonsense reasoning. In ICLR 2020.Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. NAACL HLT 2019.Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv: 1907.11692He, P., Liu, X., Gao, J., & Chen, W. (2021). DeBERTa: Decoding-enhanced BERT with Disentangled Attention. arXiv: 2006.03654.

Summary

- We proposed a quick, effective, and versatile paradigm for measuring the coherence of a text classifier's predictions
 - Unlock strong insights from small amount of annotation!
- On selected NLU tasks, SOTA pre-trained LMs perform incoherent reasoning based on spurious intermediate evidence



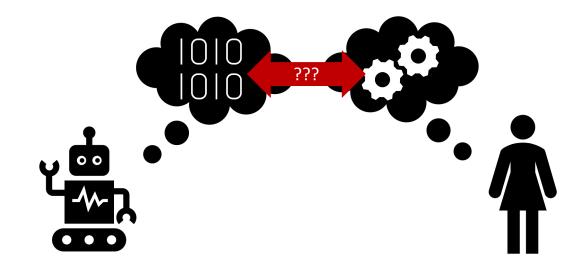
Tiered Reasoning for Intuitive Physics:

Toward Verifiable Commonsense Language Understanding

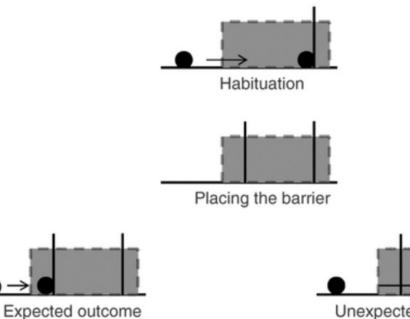
Findings of EMNLP 2021 Long Paper

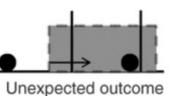
Motivation

- Large-scale, pre-trained LMs are nearing and surpassing human performance on many NLU tasks!
- It remains unclear whether the problems are *truly solved*
 - Lack of interpretability
 - Data bias
 - Incoherent supporting evidence
- How can we systematically *verify* the reasoning of large LMs on NLU tasks?



Physical Commonsense





(Parents.com)

(dreamstime)

Bliss, J. (2008). Commonsense reasoning about the physical world. In *Studies in Science Education*, 44(2): 123-155.

Lake, B., Ullman, T.D., Tenenbaum, J.B., & Gershman, S.J. (2017). Building machines that learn and think like people. In Behavioral and Brain Sciences, 40.

Hespos, S.J. & vanMarle, K. (2011). Physics for infants: characterizing the origins of knowledge about objects, substances, and number.

Tiered Reasoning for Intuitive Physics (TRIP)

- New dataset providing traces of a multi-tiered, human-annotated reasoning process:
 - Low-level, concrete physical states
 - High-level end task of plausibility classification

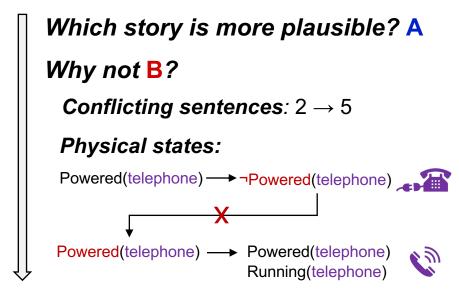
Tiered Reasoning for Intuitive Physics (TRIP)

Story A

- 1. Ann sat in the chair.
- 2. Ann unplugged the telephone.
- 3. Ann picked up a pencil.
- 4. Ann opened the book.
- 5. <u>Ann wrote in the book.</u>

Story **B**

- 1. Ann sat in the chair.
- **2.** Ann unplugged the telephone.
 - 3. Ann picked up a pencil.
 - 4. Ann opened the book.
- 5. Ann heard the telephone ring.



Data Statistics

• 675 plausible stories

• 370 train, 152 validation, 153 test

• 1476 implausible stories

- 802 train, 323 validation, 351 test
- 6 everyday environments
 - kitchen, bathroom, living room, garage, office, park
- Vocabulary size (overall): 2126
 - 486 verbs, 781 nouns

Data Statistics

- Average of 1.2 conflicting sentence pairs per implausible story
- 36.6k labels of physical states
 - 18.8k train, 8.74k validation, 9.09k test
- 20 annotated attributes

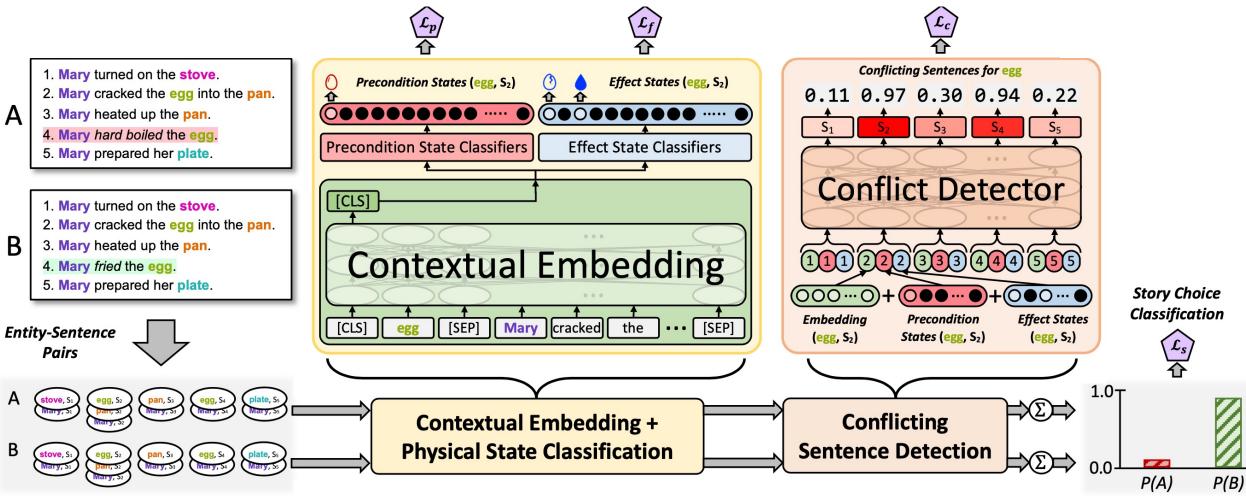
- Humans
 - 1. Location **Q**
 - 2. Conscious
 - 3. Wearing 🖄
 - 4. Wet 🌢
 - 5. Hygiene 🏔

- Objects
 - 1. Location **Q**
 - 2. Exist 💋
 - 3. Clean 🔅
 - 4. Power
 - 5. Functional 🧬
 - 6. Pieces
 - 7. Wet 🌢
 - 8. Open 📕
 - 9. Temperature 🌡
 - 10. Solid
 - 11. Contain
 - 12. Running 😃
 - 13. Moveable $+^{\uparrow}_{\downarrow}$
 - 14. Mixed
 - 15. Edible 🗐

Evaluation Metrics

	Metric	Story Choice	Conflicting Sentences	Physical States
	Accuracy	\checkmark		
	Consistency	\checkmark	\checkmark	
	Verifiability	\checkmark	\checkmark	\checkmark

Tiered Baseline

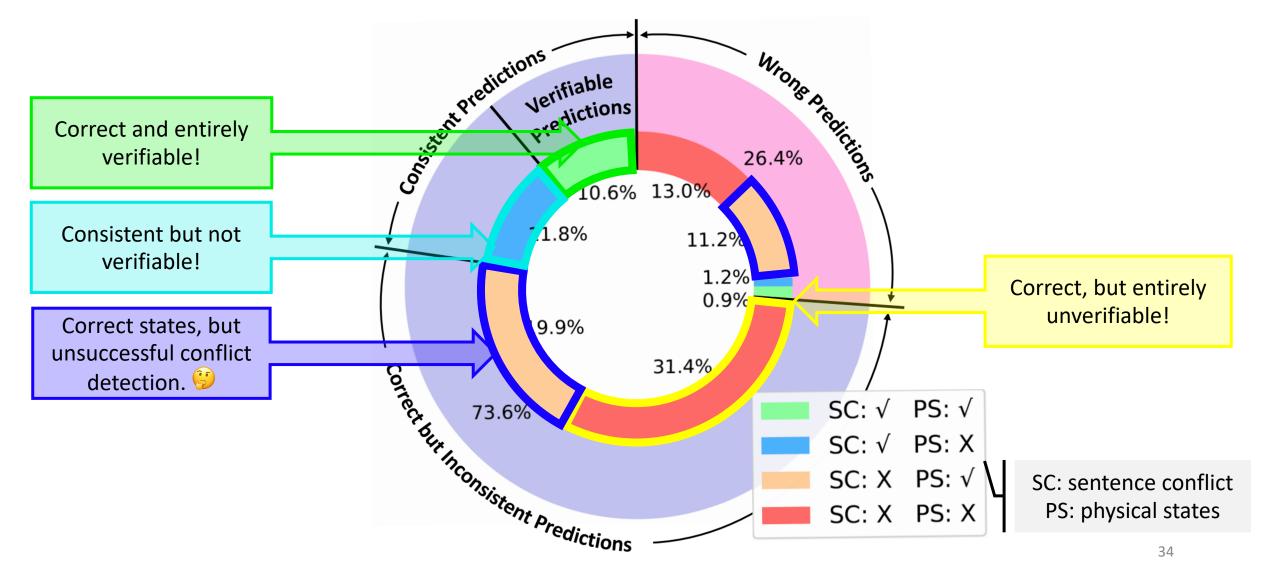


 $\mathcal{L} = \lambda_p \mathcal{L}_p + \lambda_f \mathcal{L}_f + \lambda_c \mathcal{L}_c + \lambda_s \mathcal{L}_s$

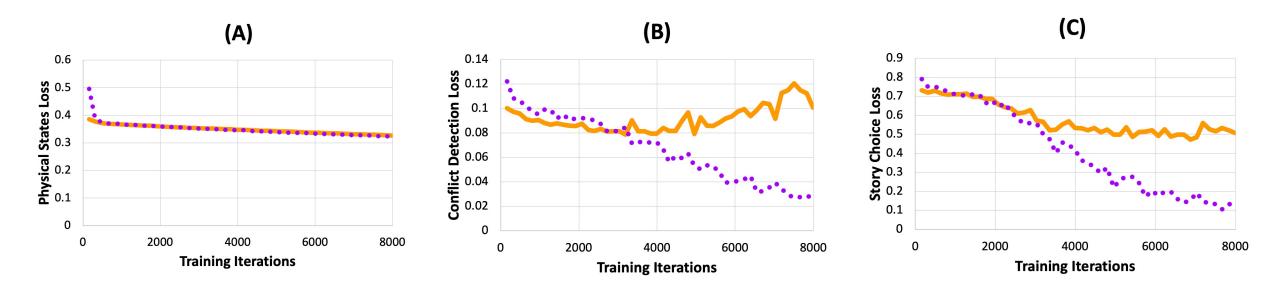
Loss Configuration	Model	Accuracy (%)	Consistency (%)	Verifiability (%)	
	random	47.8	11.3	0.0	
	BERT	78.3	2.8	0.0	All losses \Rightarrow
All Losses	RoBERTa	75.2	6.8	0.9	low consistency & verifiability.
	DeBERTa	74.8	2.2	0.0	
	BERT	73.9	28.0	9.0	No end-task loss \Rightarrow
Omit Story Choice Loss	RoBERTa	73.6	22.4	10.6	better consistency
~s	DeBERTa	75.8	24.8	7.5	& verifiability!
	BERT	50.9	0.0	0.0	Conflict detection
Omit Conflict Detection Loss \mathcal{L}_{c}	RoBERTa	49.7	0.0	0.0	doesn't emerge
$\sim c$	DeBERTa	52.2	0.0	0.0	naturally.
	BERT	75.2	17.4	0.0	Physical states don't emerge naturally
Omit State Classification Losses \mathcal{L}_p and \mathcal{L}_f	RoBERTa	71.4	2.5	0.0	
	DeBERTa	72.4	9.6	0.0	either.

Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. NAACL HLT 2019. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv: 1907.11692. He, P., Liu, X., Gao, J., & Chen, W. (2021). DeBERTa: Decoding-enhanced BERT with Disentangled Attention. arXiv: 2006.03654.

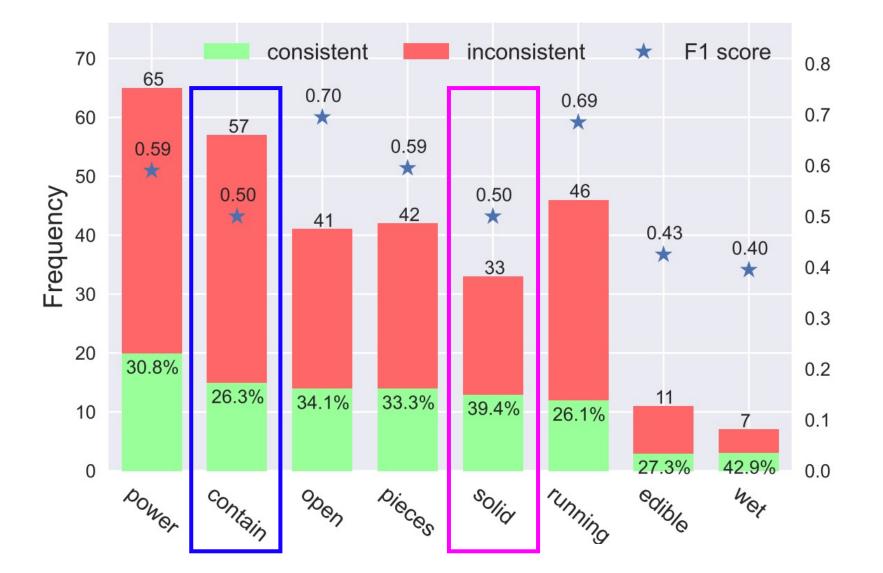
Error Distribution



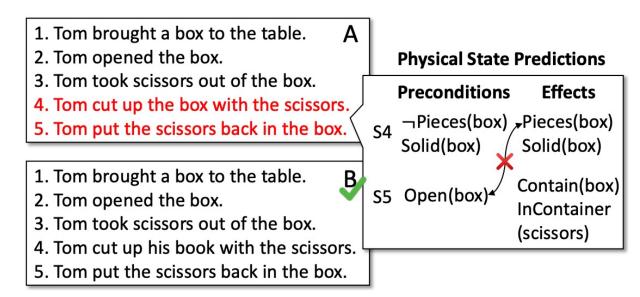
Tiered Task Learning



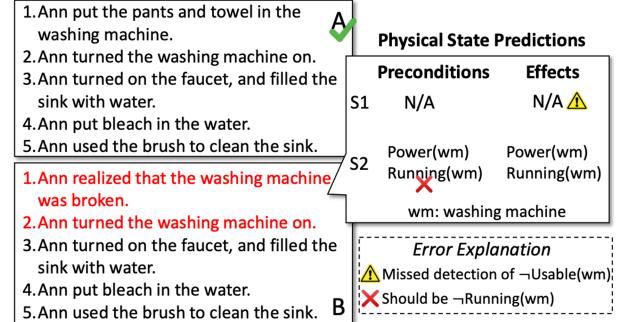
Utility of Attributes



Sample System Outputs



(a) A verifiable prediction.



(b) A consistent but not verifiable prediction.

Summary

- 1. TRIP, a **novel multi-tiered dataset** enabling training and evaluation of commonsense reasoning verifiability in NLP models.
- 2. Large LMs struggle to learn verifiable reasoning strategies when trained as tiered, verifiable reasoning systems.

Summary

- 1. TRIP, a **novel multi-tiered dataset** enabling training and evaluation of commonsense reasoning verifiability in NLP models.
- 2. Large LMs struggle to learn verifiable reasoning strategies when trained as tiered, verifiable reasoning systems.

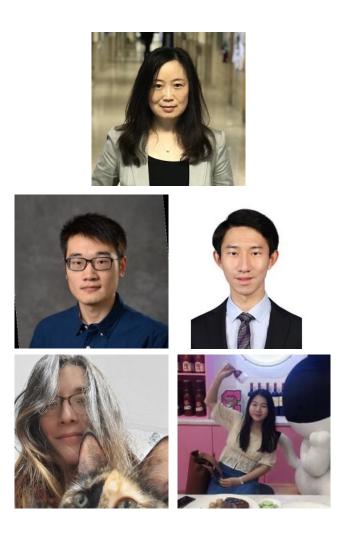
Key Takeaways

- 1. SOTA systems that perform well on NLU tasks may use incoherent reasoning based on spurious evidence
- 2. SOTA systems struggle to learn how to reason coherently
 - TRIP provides strong insights for future development of NLU systems with verifiable (physical) commonsense reasoning!
- 3. Despite exciting SOTA results, incorporating commonsense reasoning into NLU is still a difficult problem ⊗



Acknowledgements

- Advisor: Joyce Chai
- Collaborators:
 - Qiaozi Gao
 - Yichi Zhang
- Undergraduate assistants:
 - Bri Epstein
 - Haoyi Qiu



Thank you!

www.shanestorks.com