Language Model Prompting

Shane Storks

EECS 595: Natural Language Processing

December 3, 2021

Reminder: Final Project Presentation Info

- Check recent Canvas announcements for some newly released information on the final project presentations!
 - Presentation schedule (assigned dates)
 - Presentation guidelines
 - Grading criteria

• Presentation slides will be due December 16 (extended)

Pre-trained LMs

- In the last few years, the SOTA in NLP has been dominated by large-scale, pre-trained language models (LMs)
 - Train a transformer as a language model
 - Use massive amounts of text from the Web for training
- Examples
 - Google: <u>BERT</u>
 - Facebook: <u>RoBERTa</u>
 - Baidu: ERNIE
 - OpenAI: GPT, GPT-2, GPT-3

SQuAD1.1 Leaderboard

Here are the ExactMatch (EM) and F1 scores evaluated on the test set of SQuAD v1.1.

Rank	Model	EM	F1
	Human Performance Stanford University (Rajpurkar et al. '16)	82.304	91.221
1 Jul 24, 2021	{ANNA} (single model) LG AI Research	90.622	95.719
2 Apr 10, 2020	LUKE (single model) Studio Ousia & NAIST & RIKEN AIP https://arxiv.org/abs/2010.01057	90.202	95.379
3 May 21, 2019	XLNet (single model) Google Brain & CMU	89.898	95.080
4 Dec 11, 2019	XLNET-123++ (single model) MST/EOI http://tia.today	89.856	94.903
4 Aug 11, 2019	XLNET-123 (single model) MST/EOI	89.646	94.930
5 Jul 21, 2019	SpanBERT (single model) FAIR & UW	88.839	94.635
6 Jul 03, 2019	BERT+WWM+MT (single model) Xiaoi Research	88.650	94.393
7 Jul 21, 2019	Tuned BERT-1seq Large Cased (single model) FAIR & UW	87.465	93.294
8 Oct 05, 2018	BERT (ensemble) Google Al Language https://arxiv.org/abs/1810.04805	87.433	93.160
9 May 14, 2019	ATB (single model) Anonymous	86.940	92.641
10 Jul 21, 2019	Tuned BERT Large Cased (single model) FAIR & UW	86.521	92.617
10 Jul 04, 2019	BERT+MT (single model) Xiaoi Research	86.458	92.645

Masked Language Modeling

Fine-Tuning

- We can fine-tune large LMs on downstream tasks
 - Train some classification head to classify LM embeddings
 - End-to-end with LM (back-propagate using downstream task supervision)

Limitations of Fine-Tuning

- Fine-tuned LMs can exploit biases in language data
 - Achieve artificially high performance (Niven and Kao, 2019)
 - Predictions tend to be supported by incoherent evidence (Storks and Chai, 2021)
- Limited insight into how conclusions are made!

What do LMs Actually Know?

- LMs are trained on massive amounts of text data
- Latest LMs have billions of learned parameters
- What knowledge is captured in them?
- Methods:
 - Probing
 - Prompting

The Wrap

Probing

- *Approach:* freeze the LM during finetuning
- Insight on what knowledge is learned in pre-training
- Limitations:
 - Introduces additional learned parameters
 - Restricted to classification tasks

Prompting

- LMs are trained on so much data, and have already been exposed to so much knowledge...
 - How do we extract the knowledge?
- Don't fine-tune, instead **prompt** the LM with targeted language at inference time!
 - LM outputs answer as natural language
 - Zero-shot setting
- Beneficial over fine-tuning when we don't have much training data
 - Access the knowledge already stored in the LM

Outline

- Extracting knowledge with prompts
 - Relational prompts
 - Prompts to improve fine-tuning
 - Prompts to improve zero-shot inference
- Directly solving tasks with prompts
 - Prompting massive LMs
 - Measuring prompt utility
- Generating better prompts
 - Deterministic methods
 - Learning to prompt
 - Learning soft prompts

(from Pre-train, Prompt, and Predict Survey Paper)

Outline

- Extracting knowledge with prompts
 - Relational prompts
 - Prompts to improve fine-tuning
 - Prompts to improve zero-shot inference
- Directly solving tasks with prompts
 - Prompting massive LMs
 - Measuring prompt utility
- Generating better prompts
 - Deterministic methods
 - Learning to prompt
 - Learning soft prompts

(from Pre-train, Prompt, and Predict Survey Paper)

Relational Prompts

- Can LMs be used like knowledge bases?
- *Approach*: prompt the LM with an incomplete relation, generate the rest of it
- Advantages:
 - No schema engineering
 - No human annotation
 - Support any query

e.g. ELMo/BERT

Relational Prompts

- LAMA (Language Model Analysis) dataset compiles this type of relational knowledge
- Consists of several pre-compiled knowledge resources:
 - Wikipedia
 - Google-RE (relational facts)
 - T-REx (relational facts)
 - SQuAD (facts from passages)
 - ConceptNet

Relational Prompts

- Automatically convert relational data into prompts using templates
 - For simplicity, only consider single-token targets from the data, e.g., "Florence"
 - LM can just rank all tokens in vocabulary to fill in the blank

Comput	Delation	Statisti		tistics Baselines		KB				LM		Prompting BER1	
Corpus	Relation	#Facts	#Rel	Freq	DrQA	RE_n	RE _o	Fs	Txl	Eb	E5B	Bb	B 1
	birth-place	2937	1	4.6	-	3.5	13.8	4.4	2.7	5.5	7.5	14.9	16.1
Coordo DE	birth-date	1825	1	1.9	-	0.0	1.9	0.3	1.1	0.1	0.1	1.5	1.4
Google-RE	death-place	765	1	6.8	-	0.1	7.2	3.0	0.9	0.3	1.3	13.1	14.0
	Total	5527	3	4.4	-	1.2	7.6	2.6	1.6	2.0	3.0	9.8	10.5
T-REx	1-1	937	2	1.78	-	0.6	10.0	17.0	36.5	10.1	13.1	68.0	74.5
	<i>N</i> -1	20006	23	23.85	-	5.4	33.8	6.1	18.0	3.6	6.5	32.4	34.2
	<i>N-M</i>	13096	16	21.95	-	7.7	36.7	12.0	16.5	5.7	7.4	24.7	24.3
	Total	34039	41	22.03	-	6.1	33.8	8.9	18.3	4.7	7.1	31.1	32.3
ConceptNet	Total	11458	16	4.8	-	-	-	3.6	5.7	6.1	6.2	15.6	19.2
SQuAD	Total	305	-	-	37.5	-	-	3.6	3.9	1.6	4.3	14.1	17.4

Table 2: Mean precision at one (P@1) for a frequency baseline (Freq), DrQA, a relation extraction with naïve entity linking (RE_n), oracle entity linking (RE_o), fairseq-fconv (Fs), Transformer-XL large (Txl), ELMo original (Eb), ELMo 5.5B (E5B), BERT-base (Bb) and BERT-large (Bl) across the set of evaluation corpora.

Takeaways

- Using prompts to sample relational knowledge from large LMs works to some degree
 - Fairly competitive with baselines
- While BERT performs best, still much room for improvement in zeroshot setting
 - Maybe we're not ready to let go of fine-tuning...

Outline

- Extracting knowledge with prompts
 - Relational prompts
 - Prompts to improve fine-tuning
 - Prompts to improve zero-shot inference
- Directly solving tasks with prompts
 - Prompting massive LMs
 - Measuring prompt utility
- Generating better prompts
 - Deterministic methods
 - Learning to prompt
 - Learning soft prompts

(from Pre-train, Prompt, and Predict Survey Paper)

Prompts to Improve Fine-Tuning

- Fine-tuning requires a large training dataset
 - Difficult to learn from small dataset
- Improve learning from small dataset with pattern-exploiting training (PET)
- Approach:
 - Define several fill-in-the-blank templates (patterns) to use as prompts
 - Fine-tune separate LMs to generate supporting knowledge when prompted with each pattern
 - 2. Use ensemble of all patterns to generate soft labels for unlabeled data
 - 3. Fine-tune another LM on labeled data and soft-labeled data

Line	Examples	Method	Yelp	AG's	Yahoo	MNLI (m/mm)
1 2 3	$ \mathcal{T} = 0$	unsupervised (avg) unsupervised (max) iPET	$\begin{array}{c} 33.8 \pm 9.6 \\ 40.8 \pm 0.0 \\ \textbf{56.7} \pm 0.2 \end{array}$	$\begin{array}{c} 69.5 \pm 7.2 \\ 79.4 \pm 0.0 \\ \textbf{87.5} \pm 0.1 \end{array}$	$\begin{array}{c} 44.0 \pm 9.1 \\ 56.4 \pm 0.0 \\ \textbf{70.7} \pm 0.1 \end{array}$	$\begin{array}{c} 39.1 \pm 4.3 \ / \ 39.8 \pm 5.1 \\ 43.8 \pm 0.0 \ / \ 45.0 \pm 0.0 \\ \textbf{53.6} \pm 0.1 \ / \ \textbf{54.2} \pm 0.1 \end{array}$
4 5 6	$ \mathcal{T} = 10$	supervised PET iPET	$\begin{array}{c} 21.1 \pm 1.6 \\ 52.9 \pm 0.1 \\ \textbf{57.6} \pm 0.0 \end{array}$	$\begin{array}{c} 25.0 \pm 0.1 \\ 87.5 \pm 0.0 \\ \textbf{89.3} \pm 0.1 \end{array}$	$\begin{array}{c} 10.1 \ \pm 0.1 \\ 63.8 \ \pm 0.2 \\ \textbf{70.7} \ \pm 0.1 \end{array}$	$\begin{array}{c} 34.2 \pm 2.1 \ / \ 34.1 \ \pm 2.0 \\ 41.8 \ \pm 0.1 \ / \ 41.5 \ \pm 0.2 \\ \textbf{43.2} \ \pm 0.0 \ / \ \textbf{45.7} \ \pm 0.1 \end{array}$
7 8 9	$ \mathcal{T} = 50$	supervised PET iPET	$\begin{array}{c} 44.8 \pm 2.7 \\ 60.0 \pm 0.1 \\ \textbf{60.7} \pm 0.1 \end{array}$	$\begin{array}{c} 82.1 \pm 2.5 \\ 86.3 \pm 0.0 \\ \textbf{88.4} \pm 0.1 \end{array}$	$52.5 \pm 3.1 \\ 66.2 \pm 0.1 \\ 69.7 \pm 0.0$	$\begin{array}{c} 45.6 \pm 1.8 \ / \ 47.6 \ \pm 2.4 \\ 63.9 \ \pm 0.0 \ / \ 64.2 \ \pm 0.0 \\ \textbf{67.4} \ \pm 0.3 \ / \ \textbf{68.3} \ \pm 0.3 \end{array}$
10 11 12	$ \mathcal{T} = 100$	supervised PET iPET	$\begin{array}{c} 53.0 \pm 3.1 \\ 61.9 \pm 0.0 \\ \textbf{62.9} \pm 0.0 \end{array}$	$\begin{array}{c} 86.0 \pm 0.7 \\ 88.3 \pm 0.1 \\ \textbf{89.6} \pm 0.1 \end{array}$	$\begin{array}{c} 62.9 \pm 0.9 \\ 69.2 \pm 0.0 \\ \textbf{71.2} \pm 0.1 \end{array}$	$\begin{array}{c} 47.9 \pm 2.8 \ / \ 51.2 \ \pm 2.6 \\ 74.7 \ \pm 0.3 \ / \ 75.9 \ \pm 0.4 \\ \textbf{78.4} \ \pm 0.7 \ / \ \textbf{78.6} \ \pm 0.5 \end{array}$
13 14	$ \mathcal{T} = 1000$	supervised PET	$\begin{array}{c} 63.0 \pm 0.5 \\ \textbf{64.8} \pm 0.1 \end{array}$	86.9 ±0.4 86.9 ±0.2	$\begin{array}{c} 70.5 \ \pm 0.3 \\ \textbf{72.7} \ \pm 0.0 \end{array}$	$\begin{array}{c} \textbf{73.1} \pm \textbf{0.2} \text{ / } \textbf{74.8} \pm \textbf{0.3} \\ \textbf{85.3} \pm \textbf{0.2} \text{ / } \textbf{85.5} \pm \textbf{0.4} \end{array}$

Table 1: Average accuracy and standard deviation for RoBERTa (large) on Yelp, AG's News, Yahoo and MNLI (m:matched/mm:mismatched) for five training set sizes $|\mathcal{T}|$.

Takeaways

- If we have only a small amount of training data, we can enhance fine-tuning with prompting for best results
 - Outperform supervised (finetuning) and unsupervised (zero-shot) approaches
- Improvement is largest for smaller training dataset sizes

Figure 5: Accuracy of supervised learning (sup.) and PET both with and without pretraining (PT) on Yelp

Outline

- Extracting knowledge with prompts
 - Relational prompts
 - Prompts to improve fine-tuning
 - Prompts to improve zero-shot inference
- Directly solving tasks with prompts
 - Prompting massive LMs
 - Measuring prompt utility
- Generating better prompts
 - Deterministic methods
 - Learning to prompt
 - Learning soft prompts

(from Pre-train, Prompt, and Predict Survey Paper)

- *Recall*: zero-shot inference is hard
 - Can we prompt LM for additional knowledge to support prediction?
- *Approach*: Define several templates we can use to gather clarifying knowledge for a language task
 - <u>Example</u>: Because Brett found an internship while in college but Ian was unable to, *he* found a job less quickly after graduation.
 - *he* = Brett or lan?
 - <u>Ask:</u> What's the purpose of an *internship*? What is a *job*?
 - LM: The purpose of the *internship* is to help people find jobs.
 - LM: The definition of *job* is to be employed by someone.

- In practice, we can also prompt the LM for the concept that needs clarification
- "Self-talk"

	COMeT	ConceptNet	Google Ngrams	GPT	Distil-GPT2	GPT2	GPT2-M	GPT2-L	GPT2-XL	XLNet	XLNet-L
COPA	10.25	6.87	7.50	7.25	5.37	7.12	7.37	4.37	7.75	6.87	7.37
CSQA	0.39	-3.23	-0.30	-4.04	-3.79	-3.58	-3.09	-3.26	-3.65	-3.91	-3.55
MC-TACO	1.90	3.35	3.53	2.36	2.59	3.15	2.56	3.06	2.92	1.84	1.75
Social IQa	2.74	1.21	1.49	1.71	1.87	1.66	1.75	1.95	2.24	1.74	1.79
PIQA	3.77	4.07	4.36	4.01	3.61	3.80	3.89	3.88	3.96	3.82	4.10
WinoGrande	0.01	-0.01	-0.11	0.13	-0.17	-0.03	-0.04	0.04	0.08	-0.10	-0.25

Table 1: Relative improvement upon the zero-shot baseline in terms of development accuracy, for each knowledge source averaged across LMs for each dataset.

Takeaways

- Prompting LM for clarification ("self-talking") on language tasks improves zero-shot task performance!
- Paper also includes excellent analysis on the quality and helpfulness of generated clarifications

Outline

- Extracting knowledge with prompts
 - Relational prompts
 - Prompts to improve fine-tuning
 - Prompts to improve zero-shot inference
- Directly solving tasks with prompts
 - Prompting massive LMs
 - Measuring prompt utility
- Generating better prompts
 - Deterministic methods
 - Learning to prompt
 - Learning soft prompts

(from Pre-train, Prompt, and Predict Survey Paper)

Prompting Massive LMs

- As LMs continue to grow, the more knowledge they can store
 - More complex LMs may become more viable for zero-shot inference
- Zero-shot inference with large LMs is hard!
 - What if we prompt the LM with a few examples of the task first?
 - Few-shot setting

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

Prompting Massive LMs

- As LMs continue to grow, the more knowledge they can store
 - More complex LMs may become more viable for zero-shot inference
- Zero-shot inference with large LMs is hard!
 - What if we prompt the LM with a few examples of the task first?
 - Few-shot setting

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

GPT-3 Zero-Shot and Few-Shot Inference

- GPT-3 succeeds in zero-shot and fewshot settings across several language tasks!
 - Zero-shot and fewshot performance increase as model complexity increases

Takeaways

- Massive LMs can successfully perform language understanding tasks without fine-tuning on thousands of examples
 - Rather just need to prompt with a few examples first
 - Compete with supervised SOTA approaches
- Huge consequences!
 - NLP is now moving away from finetuning, and toward prompting!

Outline

- Extracting knowledge with prompts
 - Relational prompts
 - Prompts to improve fine-tuning
 - Prompts to improve zero-shot inference
- Directly solving tasks with prompts
 - Prompting massive LMs
 - Measuring prompt utility
- Generating better prompts
 - Deterministic methods
 - Learning to prompt
 - Learning soft prompts

(from Pre-train, Prompt, and Predict Survey Paper)

Measuring Prompt Utility

- Are data points better used as few-shot prompts or for fine-tuning examples? How do we quantify how useful prompting is?
- *Approach*: For some language task, evaluate the accuracy for varying numbers of data points (task instances)
 - Use instances either for **fine-tuning** or **prompting** LM
 - **Prompt utility:** For some accuracy *X* achieved by the LM, how many more/fewer data points did fine-tuning require compared to prompting?

Measuring Prompt Utility on MNLI

Scao, T.L. and Rush, A.M. (2021). How Many Data Points is a Prompt Worth? NAACL 2021 (Outstanding Short Paper).

Takeaways

• For small datasets, prompting is stronger than fine-tuning! 🜂

Outline

- Extracting knowledge with prompts
 - Relational prompts
 - Prompts to improve fine-tuning
 - Prompts to improve zero-shot inference
- Directly solving tasks with prompts
 - Prompting massive LMs
 - Measuring prompt utility

Generating better prompts

- Deterministic methods
- Learning to prompt
- Learning soft prompts

(from Pre-train, Prompt, and Predict Survey Paper)

Generating Better Prompts

- Prompts so far have been manually defined based on various templates or pre-compiled benchmark data...
 - Can we do better than this? How can we find an optimal prompt?
- Approaches:
 - Deterministic augmentation of prompts
 - Learning to generate LM prompt text
 - Learning to generate LM prompt vectors

Outline

- Extracting knowledge with prompts
 - Relational prompts
 - Prompts to improve fine-tuning
 - Prompts to improve zero-shot inference
- Directly solving tasks with prompts
 - Prompting massive LMs
 - Measuring prompt utility
- Generating better prompts
 - Deterministic methods
 - Learning to prompt
 - Learning soft prompts

(from Pre-train, Prompt, and Predict Survey Paper)

Mining New Prompts

- *Goal*: generate a set of prompts for a language task such that some of them trigger LM to predict the correct answer
- Approach: For some relation type, e.g., born-in, mine templates for sentences describing the relation from Wikipedia.
 - Use the LAMA dataset, which provides relational data from Wikipedia
 - Look for other sentences in Wikipedia connecting relation entities
 - Use relation extraction techniques to identify prompts
 - Example:
 - <u>Relation in LAMA:</u> (*Dante, born-in, Florence*)
 - <u>Templated prompt from LAMA:</u> "Dante was born in Florence"
 - <u>Sentence in Wikipedia:</u> "Dante first lived in Florence"
 - Convert to prompt: "x first lived in y"

Paraphrasing New Prompts

- *Approach*: Given a prompt, paraphrase it to generate another version of it
 - Example:
 - Original prompt: "x shares a border with y"
 - <u>Paraphrased prompt:</u> "*x has a common border with y*"
 - Use back-translation
 - 1. Use pre-trained machine translation system to translate the prompt into N candidates in another language
 - 2. Translate each candidate back to English

Mining vs. Paraphrasing

- Ensemble results of all generated prompts
- Rank candidate answers to complete the prompts
- Evaluate on LAMA

Prompts	Top1	Тор3	Top5	Opti.			
	BERT-base (Man=31.1)						
Mine	31.4	34.2	34.7	38.9			
Mine+Man	31.6	35.9	35.1	39.6			
Mine+Para	32.7	34.0	34.5	36.2			
Man+Para	34.1	35.8	36.6	37.3			
	BERT-large (Man= 32 <mark>.3</mark>)						
Mine	37.0	37.0	36.4	43.7			
Mine+Man	39.4	40.6	38.4	43.9			
Mine+Para	37.8	38.6	38.6	40.1			
Man+Para	35.9	37.3	38.0	38.8			

Table 2: Micro-averaged accuracy of different methods (%). **Majority** gives us 22.0%. Italic indicates best single-prompt accuracy, and bold indicates the best non-oracle accuracy overall.

Takeaways

- Slight perturbations to prompts can significantly improve performance in extracting knowledge from LMs!
 - Effective for smaller LMs like BERT, where zero-shot setting is challenging
- Some prompts work better than others even if prompts are semantically similar!

Outline

- Extracting knowledge with prompts
 - Relational prompts
 - Prompts to improve fine-tuning
 - Prompts to improve zero-shot inference
- Directly solving tasks with prompts
 - Prompting massive LMs
 - Measuring prompt utility
- Generating better prompts
 - Deterministic methods
 - Learning to prompt
 - Learning soft prompts

(from Pre-train, Prompt, and Predict Survey Paper)

Learning New Prompts

- To create prompts, so far we've...
 - Hand-engineered them
 - Deterministically generated them
- How can we *learn* the optimal words for a prompt?
- *Approach*: given some manually defined prompt, select several learned **trigger tokens** with a gradient-based search
 - Improve the likelihood of the LM producing the correct answer
 - Learn which tokens are best suited to be associated with class labels

Learning New Prompts

A real joy . atmosphere alot dialogue Clone totally

Learning Mapping from Tokens to Classes

- Given a prompt, an LM will rank all tokens in the vocabulary by likelihood to appear after the prompt
 - The most likely tokens are not necessary the desired token relating to a class, e.g., "positive"
- Can we learn a better mapping from generated tokens to predicted classes?

Takeaways

- AutoPrompt drastically improves performance over manually defined prompts!
- Performance comes close to supervised approaches even with BERT and RoBERTa
 - Much smaller than GPT-3 Straight St

Model	Dev	Test
BERT (finetuned)	-	93.5^\dagger
RoBERTa (finetuned)	-	96.7^\dagger
BERT (manual)	63.2	63.2
BERT (AUTOPROMPT)	80.9	82.3
RoBERTa (manual)	85.3	85.2
RoBERTa (AUTOPROMPT)	91.2	91.4

Table 1: Sentiment Analysis performance on the SST-2 test set of supervised classifiers (top) and fill-in-theblank MLMs (bottom). Scores marked with † are from the GLUE leaderboard: http://gluebenchmark.com/ leaderboard.

Outline

- Extracting knowledge with prompts
 - Relational prompts
 - Prompts to improve fine-tuning
 - Prompts to improve zero-shot inference
- Directly solving tasks with prompts
 - Prompting massive LMs
 - Measuring prompt utility
- Generating better prompts
 - Deterministic methods
 - Learning to prompt
 - Learning soft prompts

(from Pre-train, Prompt, and Predict Survey Paper)

- *Lastly*: Why limit ourselves to human-interpretable tokens?
 - Past prompting works have focused on the tokens in prompts
 - In SOTA LMs, tokens are converted into numerical vector embeddings using several embedding layers before being processed by the transformer
 - Word embedding
 - Position embedding
 - Segment embedding
 - Can we learn a dense query vector, i.e., **soft prompt**, that is most likely to produce the correct answer for a task?
 - Prompt is no longer a sequence of words it's a sequence of vectors!

- Motivation: Some hard prompts will not apply to all cases
 - Example:
 - "____ performed until his death in ____"
 - Only applicable to male performers!
- Generate an initial soft prompt from the hard prompt's word embeddings:
 - <u>Before:</u> "_____ performed until his death in _____"
 - <u>After:</u> "_____ V_{performed} V_{until} V_{his} V_{death} V_{in} ____"
- Vectors can now be tuned continuously through small perturbations

- Consider a set of soft prompts \mathcal{T}_r for some relation type in LAMA
 - Model probability of LM's generated token as a weighted sum of soft prompt outputs, where p(t|r) is a learned weight for the soft prompt t:

$$p(y \mid x, r) = \sum_{\mathbf{t} \in \mathcal{T}_r} p(\mathbf{t} \mid r) \cdot p_{\mathrm{LM}}(y \mid \mathbf{t}, x)$$

prompt weight (learned)

- Optimize model by maximizing the likelihood of correct token being predicted
 - Weights of soft prompts are learned implicitly
 - Freeze weights of LM, but allow soft prompt vectors to be updated incrementally during training
 - Instead of learning to complete task with LM, learn how to ask the LM to complete it

- Start with pre-made hard prompts (min.) or randomly initialize the soft prompts instead (ran.)
- Compare BERT-base (**BEb**) and BERT-large (**BEI**) on LAMA
- Metrics: P@1, P@10 for correct token, mean reciprocal rank (MRR)

Model	P@1	P@10	MRR
lama (BEb)	0.1^{\dagger}	2.6^{\dagger}	1.5^{\dagger}
LAMA (BEI)	0.1^{\dagger}	5.0^{\dagger}	1.9†
Soft (min.,BEb)	11.3(+11.2)	36.4(+33.8)	19.3(+17.8)
Soft (ran.,BEb)	11.8 (+11.8)	34.8(+31.9)	19.8(+19.6)
Soft (min.,BEl)	12.8(+12.7)	37.0(+32.0)	20.9(+19.0)
Soft (ran.,BEl)	14.5(+14.5)	38.6(+34.2)	22.1(+21.9)

Table 3: Results on ConceptNet (winner: random init).

Takeaways

- We don't need language-based prompts to extract knowledge out of large LMs!
- We can get away with learning vector prompts that are randomly initialized
 - No need to write prompts!
- *Limitation*: loss of interpretability 😅
- *Question*: How does this translate to few-shot learning with GPT-3?
 - Left for future work

Summary

- 1. It's difficult to extract knowledge from early large LMs, e.g., BERT, using manually-defined prompts
- 2. Manually-defined prompts can be combined with LM fine-tuning for better performance when training data is small
- 3. Prompts can be used to gather supporting information to solve language tasks in zero-shot settings
- 4. More complex language models, e.g., GPT-3, can solve language tasks directly in zero- and few-shot settings
- 5. Prompting is stronger than fine-tuning when training data is small
- 6. Learning prompts for LMs further improves performance, even on zeroshot setting for early large LMs

Thank you!